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University of Washington

Abstract

Methods for Evaluating the Performance
and Human Stress-Factors of Percussive Riveting

Jonathan Y. Ahn

The aerospace industry automates portions of their manufacturing and assembly processes.
However, mechanics still remain vital to production, especially in areas where automated
machines cannot fit, or have yet to match the quality of human craftsmanship. One such
task is percussive riveting. Because percussive riveting is associated with a high risk of
injury, these tool must be certified prior to release. The major contribution of this thesis
is to develop a test bench capable of percussive riveting for ergonomic evaluation purposes.
The major issues investigated are: (i) automate the tool evaluation method to be repeatable;
(ii) demonstrate use of displacement and force sensors; and (iii) correlate performance and
risk exposure of percussive tools. A test bench equipped with servomotors and pneumatic
cylinders to control zyz-position of a rivet gun and bucking bar simultaneously, is used to

explore this evaluation approach.
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Chapter 1

INTRODUCTION

This thesis documents the development of an automated test bench for evaluating hand-
held percussive tools used in commercial aircraft manufacturing. While the aerospace indus-
try has successfully automated many of the high-injury related tasks, the industry still relies
on mechanics (humans) to complete assembly stages where these large machines are unable
to fit, or where the quality of work has yet to match a mechanic [10]. These stages include
but are not limited to, installing fuselage panels to the barrel structure, joining fuselage
segments, and lap joints. One such task is percussive riveting, which is still performed by
mechanics. Unfortunately, percussive riveting is known to cause vibration-related injuries [4].
To minimize the risk of injury to mechanics, percussive tools are tested and certified prior

to release.

1.1 Percussive Riveting

Percussive riveting is a permanent fastener installation process, requiring two distinct tools:
a pneumatic hammer and bucking bar. The fastener, known as a rivet, is made of a malleable
metal alloy designed to deform under heavy repeated strikes. This process also causes the
rivet to work harden in its finished state. The pneumatic hammer (commonly referred to as
a rivet gun) is set at the head of the rivet, while the bucking bar is held at the tail end, which
forms the button. This deformation process also causes the rivet to expand within the hole,
creating a seal, which improves the mechanical loading properties [18]. Fig. 1.1 illustrates
the orientation of the tools with respect to the rivet and the structure that is to be fastened

together.
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Figure 1.1: Depicts the pneumatic hammer operator, commonly referred to as a riveter (left)
applying force to the rivet and coupon. The bucking bar operator, also known as a bucker

(right) provides the hardstop in which the rivet tail forms a button.

1.2 Risk Discrepancy

To minimize the risk of injury, the International Standard Organization ISO 5349-1, pertain-
ing to mechanical vibration and shock, provides guidelines to predict the adverse effects of
vibrations. This standard defines the most dangerous frequencies to be < 16 Hz, and least
likely to cause injury when > 100 Hz. Total vibration exposure is determined by Eq. 1.1,
which is based on time and acceleration values. However, epidemiological and animal model
experiments indicate frequencies > 100 Hz also induce injuries, noting this regulation may
be under representing the risks [17]. For instance, chainsaw operators represent the third

largest population affected by hand-transmitted vibration injuries, but are primarily exposed

—
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1 n
AB) = | = a2 . x T,
() T()Zzl hvi

Ty = 28,800 s representing 8 hr shift
(1.1)

T; = total daily exposure in seconds
where

n = number of vibration events

anvi = vibration total based on acceleration

1.3 Defined Injuries

While defining the safe frequency boundary requires further investigation, the injuries associ-
ated with vibrations are more apparent, and include but are not limited to carpal tunnel and,
lower-back, shoulder, and neck pains. However, the most notable injury is Vibration White
Finger (VWF) syndrome, which also is referred to as Hand-Arm Vibration (HAV) syndrome
and Raynaud’s syndrome. As the name implies, the most visible indication of VWF is the
permanent whitening, or blanching, of the fingertips. This is cause by the narrowing of the
arteries in the hand and fingers, reducing blood flow, which leads to neuropathy and loss of
dexterity [16].

The effects of vibration, at given accelerations, are detectable on both a human kinematic
and cellular level. Vibration frequencies entering the hand are capable of reaching the head
when < 40 Hz, at < 100 Hz the vibrations are isolated to the hand and forearm, and
> 250 Hz are found to be limited to the hand and wrist [6]. Long-term exposure to vibrations
are known to disrupt cell distribution and cause breakdown of the endothelial cells of the
arterial lumen.

A study conducted on live animal models indicated vessel damage and/or deformation
occurred at 30 Hz, 60 Hz, 120 Hz, and 800 Hz at a constant acceleration of 49 m/s? [5], [17].
The disturbance was found to cause an influx of platelets to repair the distressed vessel, the

repait-however-decreases-blood flow. These findings contradict the specified frequency ranges
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stated in ISO 5349.
1.4 Evaluation Method

A common method to evaluate vibration is to fire the percussive tool, in this case a pneumatic
hammer, against a rigid metal plate and to record the frequency and magnitude at the
handle with an accelerometer. To evaluate bucking bars, a pneumatic hammer is fixed in
place and fired against a non-deforming (rigid) material, which strikes the bucking bar from
the opposing side. While these methods determine the general range of acceleration and
vibration frequencies, the National Institute for Occupation Safety and Health (NIOSH)
found discrepancies between lab measured data and actual levels [14].

The NIOSH determined the acceleration levels measured from the field were up to 25%
higher than lab results. This was due to the use of simulated materials and test fixtures
not reflective of the mechanic or task [14]. Additionally, the results of these methods favor
tools with lower force outputs, potentially leading to further injuries due to a mechanic
overcompensating for a weaker tool - not capable of accomplishing the task. In turn, these
methods do not provide information on work performance, which is defined as the capability

of the tool to complete a given task.
1.5 Thesis Proposal

This thesis proposes the development of an automated test bench to correlate work perfor-
mance, to the risk-of-injury exposure on mechanics also referred to as human stress-factors.
This includes the forces, displacement, and duration a mechanic is exposed to while installing
fasteners. This is an expansion on the previously described evaluation method while address-
ing two needs: determining the capability of a tool to complete the installation task, and a
test bench model representative of a mechanic.

Redefining the frequencies associated with injuries extends beyond the scope of this thesis.
In this thesis, risk of injury is correlated with the reaction force a percussive tool produces,

and-amount-of time - required; by the tool to complete a task. Likewise, a higher force mag-
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nitude and longer duration indicates more stress is placed on a mechanic, which leads to
fatigue and poses the risk of injury. Hand-held tools that generate a higher magnitude of
force cause the mechanic to increase grip strength, increasing the transmission of forces and
vibration [9)].

The immediate solution to determine tool performance may be to conduct the evaluation
directly on mechanics in the field. However human involvement makes it difficult to stan-
dardize and compare results. If a mechanic is not familiar with a new tool, the tool may
not receive a fair evaluation and be noted as performing poorly. Likewise, if a mechanic
is exceptionally experienced then the flaws in a sub-par tool may go unnoticed. The use
of an automated system designed to conduct percussive tests in a similar fashion as a me-
chanic, while using actual fasteners and coupons in the field, can provide repeatibility and
standardization.

There are three objectives to this thesis, each with design specializations for the proposed

solution.
1. Develop an automated test bench capable of riveting

e Control over (zz-plane) to repeatedly align percussive tool within +0.25 mm.
e Apply constant force values between 0 — 530 N to clamp tools to coupon.

e Trigger push/pull response time is < 0.04 s to maintain number of percussive

strikes within £1, based on a < 25 Hz firing pneumatic hammer.

e Accept standard test coupons manufactured in the field with dimensions of 6” x

157 x 0.77 (specified in English Units)
2. Demonstrate value of expanding data collection parameters.

e Track change in tool position (y-plane) with respect to time.
e Profile the peak magnitudes generated by the percussion within 1.0% error

o Monitor-pressuredevels to confirm each test is properly executed.
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3. Correlate work performance to human stress-factors.
e Devise a dynamic system model that represents a human arm applying constant
force.
e Sensor data formatted for numerical analysis tool.

e Create program capable of objectively evaluating test data for exposure duration,

peak heights, and frequencies.
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Chapter 2
EVALUATION APPROACH

The test bench is operated using National Institute LabVIEW™  which controls the mo-
tor position and valve manifold settings over EtherNet/IP™. The data-acquisition sensors
are also interfaced with this system through multi-channel 1/O modules calibrated using NI-
DAQmx. The test bench is supported on a steel frame with dimensions 1.83 m x 1.57 m x

1.40 m on vibration-damping leveling mounts. Fig. 2.1 displays the structure of the test

bench.

2.1 Coordinate Positioning

Two pairs of MOOG Animatics™ servo motors are used to navigate both ends of the
(zz-plane) of the coupon window. For the y-azes, in place of servo position control, air
cylinders with piston diameters of 64 mm and stroke length of 170 mm are used to actuate
(clamp) the tool forward with a desired force, and retract when moving the tool to another
location. These air cylinders are used to clamp the tool platform against the test coupon.
The location of the three actuators on each side of the coupon are mirrored, and operate on
the same Cartesian coordinates with the exception of the air cylinders recognizing positive
y-azes being towards the center for both. Fig. 2.2 illustrates the references with respect to

the proposed test bench.
2.2 Pneumatic Control

The air cylinders to clamp the tools to each side of the coupon; one for the pneumatic
hammer, and the other for the bucking bar, are shown in Fig. 2.3 and 2.4. A second

ait-cylinder . with-a-diameter of 6.4 mm, is attached to the pneumatic hammer to push
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the trigger, as shown in Fig. 2.6. This air cylinder applies 25 N and is capable of push-
ing/retracting the pneumatic hammer trigger in < 0.03 s. These air cylinders are controlled
by a FESTO™ valve manifold, as shown in Fig. 2.5. The desired pressure and duration is

programmed in LabVIEW| which controls the valve manifold.

= ]

= 7 T AN ~
Collar and Rail ~ Trigger Cylinder Load Cell Laser Arm mass Air Cylinder and Piston

Figure 2.3: Depicts the final carriage design for the pneumatic hammer that is installed to
the right-hand side of the (zz-plane) platform. The load cell is fastened between the arm
mass and the back of the pneumatic hammer. The laser is aligned to the linear rail block
(green) and captures the displacement as the hammer moves forward and backwards. The

arm mass is further described in Ch.4.
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A)

Air Cylinder and Piston Arm mass Laser Load Cell Rail Mount Bucking Bar
1

Figure 2.4: Depicts the final carriage design for the bucking bar that is installed to the
left-hand side of the (zz-plane) platform. The load cell is fastened between the arm mass
and the back of the bucking bar. The laser is aligned to the linear rail block (green) and
captures the displacement as the bucking bar moves forward and backwards. The arm mass

is further described in Ch.4.

2.3 Design Versatility

The mount securing the percussive tool is 3D-printed with 100% infill using high density
acrylonitrile butadiene styrene (ABS) plastic. This provides a solution to testing percussive
tools of various shapes and dimensions, with relatively short turn around times. These ABS
parts mount the tools to THK™ SHS15 pillow blocks, which slide along the linear rails.

Fig. 2.6 .shows the printed-part used to maintain alignment of the percussive tools.
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2.4 Data-Acquisition (DAQ)

The test bench is equipped with four types of data-acquisition sensors to record and validate
the performance of the tools. The minimum sampling rate is set to be 22x that of the peak

wavelength frequency each sensor encounters, to obtain peak heights with 1.0% error.

2.4.1 Laser Displacement

Keyence™ Head-spot type LK-G152 lasers are installed to track along the y-azis. These
lasers record the forward progress of the tool as it installs the fasteners, and the reverse
displacement (recoil) generated by each strike. The minimum sampling rate required is
0.8 kH z for a percussive tool firing up to 25 Hz, the actual sampling rate used in this thesis

is 5.0 kHz.

2.4.2  Acoustic Profile

The G.R.A.S.™ 26CB preamplifier microphone is installed near the rivet dye at a distance
of ~ 0.07 m , and is oriented towards the fastener. The purpose of this sensor is to record
the peak sound pressure produced by each percussive impact. In low-noise environments,
these peak signals are used to confirm the number of hits. The signal peaks within the first
~ 10% of each strike, demanding a faster minimum sampling rate, of 22.0 kHz. The actual

rate used is 25.0 kH z.

2.4.8 Force Sensors

Interface™ WMC Button load cells are placed in series behind the pneumatic hammer and
bucking bar, recording the axial compression forces exerted on the back of the handle. The
proposed test bench is configured with the load cell between the tool and the arm mass. The
pneumatic hammer transfers a large force over a short duration, in which the signal peaks

withinsthe fitstyr20%-0f the;wave in each impact. The force profile is a critical component,
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correlating both the performance and stress-factors to the other sensors. The minimum rate

is 1.6 kHz and the actual rate is set to 10.0 kH z.

2.4.4 Air Pressure Monitor

A FlowMaxx™ Venturi Flowmeter is installed in series with the air supply energizing the
pneumatic hammer, monitoring the static and differential pressures. This sensor is used to
determine the pneumatic hammer is firing properly based on the expected air consumption
rate. This value is expected to remain constant with respect to each pneumatic hammer.
Unusual results may be traceable back to the pressure changes to determine whether a tool
is malfunctioning, and in turn not representative of all equivalent models. The minimum

rate is 1.6 kH z and the actual rate collected is 10.0 kH z.
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Figure 2.1: Displays the black steel box tube frame with large footprint used to support the
test bench, showing mainly the right-hand side. The valve manifold is located beneath the
(purple) coupon holder, and two pressure filtration-lubrication regulators are attached to the

far lower side of the steel frame.
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Figure 2.2: Depicts the zyz-coordinate range of the test bench. The working envelope of the
servomotors (zz-plane) is approximately 0.60 m width by .45 m height, and the inward stroke
length for y-axis pneumatic air cylinders are 0.17 m. The test bench is fixed at a standing
height of 1.52 m to also allow for comparison studies with mechanics. The servomotors can
be jogged to either end of the test bench to provide space for mechanics to rivet on the test

bench.
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Figure 2.5: Displays the Festo valve manifold utilized to control the pressure outputs to the

pneumatic components.

Figure 2.6: Displays the white ABS printed mount, which houses the trigger air cylinder and

secures the percussive tool to the linear rail.
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Chapter 3

PERCUSSIVE INDEX

This thesis explores the use of a percussive index, borrowed from the Articulated Total
Body (ATB) and Head Injury Criterion (HIC) [8], [12]. While head injuries differ from upper
extremity injuries, this is to propose that other previously established indices be investigated
and considered for use to grade percussive tools. Additionally, developing an entirely new
index would require subjecting a significant number of animals to various arm injuries, when
instead head injuries have already been, and continue to be extensively studied using in vivo
models [21], [22]. The percussive index equation is equivalent to the Head Injury Criterion

(HIC) equation [15] (not to be mistaken for the Head Severity Index equation).

The original HIC equation uses acceleration, a, within the integral. For the applications

of this thesis, acceleration is derived from the force over total mass, as shown in Eq. 3.1.

1 t+7e F 2.5
Percussive Index (PI) =7, {—/ =i dt}
t

Te mr
(
7. = Time Constant

t = Start Time (s)
where

Fr = Reaction Force (N)

| mr = Mass of Tool & Arm Model (kg)

In Eq. 3.1, 7, is defined as the width of the time window, which span the limits of the

Tc

15, while

integral. The 7. is moved forward along the time-axis in increments equal to

returning the indexvalue.as.;shown in Fig. 3.1.
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Percussive Index (Pl) Approach
T T T T T T T

Derived Acceleration (mlsz)

0.35 0.36 037 0.38 0.39 04 041 0.42 043 0.44
Time (s)

Figure 3.1: Illustrates the time constant, 7., represented as the width of the green box and
as it progresses along the time-axis. Note the data points within the box are not exclusive
to one returned index value; a portion of the data points in the box will overlap as the box

moves forward in & steps.

The index value calculated from Eq. 3.1 for each increment of 7, is represented as a point
with respect to time; the plot is complete once the entire derived acceleration data set has
been indexed. The value of 7, is determined by the highest peak value of an index plot, as
shown in Fig. 3.2. For the applications of this thesis, the final Pl-score for a given data set

is calculated by summing all the index values.
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Pneumatic Hammers Index Score

1000 T \ \

I
——Tau =0.0010
——Tau =0.0025
~—Tau =0.0050

700 — —

Percussive Index (Pl)

L | | | | 1 | L
037 0.38 039 04 0.41 042 043 0.44

Time (s)

Figure 3.2: Tllustrates the index plot generated from Fig. 3.1, and the method for determining
7. through iteration. Note the ideal value for 7, is the middle value (red-line), which produces

the highest peak value in accordance with the method for implementing the HIC system.

www.manharaa.com




18

Chapter 4

DYNAMIC SYSTEM MODEL

For the purpose of this thesis, the human arm is represented by a first-order system
modeling a constant force being applied to a mass. Spring forces are not included in this
model, since the spring constant of the muscles, ligaments, and tendons are unique to the
individual and change based on the location of the fastener. For e.g., the body posture
changes when riveting overhead as opposed to downward. Fig. 4.1 illustrates the arm position
and corresponding linear graph for this first-order system [7]. The arm mass is calculated
by summing the mass of one hand, one forearm, and half the value of one upper arm of a

human with average build, totaling 2.9 kg [3], [11]

4.1 Forearm Stiffness

The stiffness of the forearm bone was considered when designing the dynamic system model.
This was calculated with a Young’s Modulus (E) of 18.6 G Pa for the cortical bone shell, with
a length of 262.2 mm, and an average cross-sectional area of 462 mm? for the hard outer
bone shell of the radius [1], [19]. The stiffness (k) of the forearm bone was 32.7 x 105 N/m.
The natural frequency was 534 H z, which was calculated using the forearm mass determined
in the previous section. With the stiffness of the forearm bone being so high, the mass of the
tool and mass of the forearm were assumed to be rigidly coupled together, and considered
a single mass for the model in this thesis. The calculations for determining the stiffness is

found in Appendix C.
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4.2 Ideal Model

In this model, the constant force of the arm, f, is produced by a constant pressure, P,., over

a fixed cross-sectional area, A, as shown:

f=—AP,. (4.1)

The second equation for this model has the velocity of air mass, V,,, defined by the flow

rate, (), over the fixed area, A, as shown:

v, =9 (4.2)

P
Q

The transfer function for the first-order system indicates the velocity as the output, with

[« RN

the force as the input, and is a f(m) as follows:

Ti(s) = = (4.3)

4.3 Implementation Model

The ideal model does not take into account the response time of the valve manifold. This
is the time required to adjust the pressure, to maintain a constant force on the mass as
the pneumatic hammer and/or bucking bar are displaced. The displacement changes the
volume of air within the large cylinders, which changes the pressure and in turn the clamping
force. The implementation model proposed for this thesis consist of a mechanical and fluid
component, related through a gyration transformation. The implementation model must
also take into account a time constant, 7., to determine the response. Fig. 4.2 illustrates the

sraph mode o-define five equations and two state variables: Vm and PC. These
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T constant by jE‘lI’IIl

p)

m = 2.64 kg m S

Rivet gun arm+gun

Jr =>

()

m =2.90 kg

Figure 4.1: Depicts the orientation of the human arm and the constant force being applied
from by a mechanic (left), and the linear graph representing the arm model (right). Addi-
tionally, the force from the pneumatic hammer, f,, is presented here as reference for the test

bench air cylinder model.

are defined by the mass, m, force of the mass, f,,, the capacitance, C', the capacitance flow
rate, ()., the resistor, R, the pressure of the resistor, Py, the flow rate of the resistor, Qg,

and the force of the pneumatic hammer, f,.. The five equations are as follows:

V= % fm (4.4)
b= 50, (4.5
Pr = RQr (4.6)
Qe=0r—Q (4.7)
Jm=1 =1 (4.8)
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Se ()1

\

Figure 4.2: Depicts the linear graph model of the fluid to mechanical components through
a gyrating transducer. This model relates the force of the air cylinder to the valve defined
by capacitance and time constant, to the first-order human arm model. The time constant

is determined by both the solenoid actuation and change in pressure response times.

The first state equation is by solved by substituting Eq. 4.1 and Eq. 4.8 into Eq. 4.4,

giving the following:

Vo= ~fn= 20— )= L, + 4P (4.9)
m m m

The second state equation is by solved by substituting Eq. 4.2, Eq. 4.6 and Eq. 4.7 into

Eq. 4.5, giving the following;:

P
L _V,A 4.10
5~ Vi) (4.10)
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d |Vim o 4 Vil %f
T = — = r
dt A
P. e _R_lc P, 0
Vin
y=1
P.

The transfer function for the implementation model is again defined by velocity as the

output and force as the input, and is a f(A, 3, 7., m, Volume) as follows:

B@ﬁJﬁgzkji;zﬁ% (4.11)
wn = A m% (4.12)

g:ﬁa % (4.13)

R:% (4.14)

o Volume (4.15)

4.4 Model Responses

The desired Ti(s) and actual T5(s) responses are plotted in Fig. 4.3 and show Th(s) is
asymptotic to the magnitude of the desired first-order (mass-force) system near the driving
frequency. The driving frequency of pneumatic hammers is ~ 20H z in which case the higher
the driving frequency, the closer Ty(s) approaches the ideal model. For the given T5(s)
model, the given time constant, 2.37., is 0.150 s, which represents the 0 —90% step response
as defined by the manufacturer of the pressure regulator system. By applying the ~ 63.2%
cutoff, the appropriate 7. to model the response is 0.065 s.

A limitation of this model is the absence of total body weight. For this test bench, a
higher clamping force from the air cylinder is used to ensure the pneumatic hammer recoupled

er-in-time-before the next strike is delivered, as the tool should never be fired
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without the dye in contact to the rivet. To ensure proper contact, mechanics utilize their

body weight to react to the forces generated by the pneumatic hammer, minimizing the

distance of the recoil.
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Chapter 5
TEST PROPOSAL

The constructed test bench is evaluated through two types of tests: (i) interference-fit

bolt installations and (ii) percussive riveting for wing manufacturing,.

5.1 Interference-Fit Bolt Installation

In addition to forming riveting, pneumatic hammers are also used to install interference-fit
bolts, which is performed by a single mechanic. The process of installing bolts is commonly
referenced to in aircraft manufacturing as driving in bolts rather than riveting. This test is
ideal for evaluating pneumatic hammer independent of bucking bars. For this experiment,
the nominal fastener/bolt diameter is 12.675 mm and nominal coupon hole diameter is
12.600 mm, as illustrated in Fig. 5.1. The coupon dimensions are 152 mm x 381 mm X
18 mm. The nominal bolt insertion distance from start to finish is 24.5 mm, and has an
average installation time of 500 ms.

This test compares the Atlas Copco 12P to the Ingersoll Rand AVC27, as shown in Fig.
5.2. The 12P is designed with a built-in air damper between the rivet dye and barrel, reducing
the forces experienced by the mechanic. This experiment is executed with the following two

hardware settings:

e A trigger pull and hold duration of 800 ms.

e Constant clamping force of 235 N.

For this test, the trigger duration is set to be longer than the actual time required to
fully seat the bolt into the coupon. Unlike rivets, there is little concern for over forming, also

known.as.popping;-the fastener. The benefit of hammering slightly longer ensures the bolt
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Figure 5.1: Displays the 12.675 mm bolts in a coupon with 12.600 mm interference fit holes,
with a top view (left) illustrating the starting position for a bolt, and the fully seated position
(right) with the threads present on the back side of the coupon.

is driven to completion, and both the start and finish positions are captured by the DAQ
sensors. The actual end time is determined by when the bolt has been fully seated, in which

case the laser does not detect anymore forward progress.

The second criteria for this experiment is to select a clamping force that is representative
of a mechanic. While 235 N of force is not trivial to generate with a single arm, it is an
approximation of the immediate force provided by the large inertial mass of a mechanic’s
body, in response to an impulse. This force simulates a mechanic leaning forward to minimize

the tool from decoupling from the fastener.

The interference-fit bolt experiment investigates five parameters:

xp Displacement per Strike (along the z-azis)
Fr Reaction Force
P, Acoustic Pressure

ty Exposure Duration

ng Total Number of Strikes by Riveter
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Atlas Copco 12P

o

Ingersoll Rand AVC27

Figure 5.2: Displays the Altas Copco 12P (top) and the Ingersoll Rand AVC27 (bottom),
both of which are tested in the interference-fit bolt experiment. The 12P has a mass of 2.23 kg
and the AVC27 has a mass of 2.35 kg. The weight of the additional moving components,
which include the linear rail block and collar is 0.50 kg. The total tested weight for the 12P
is 2.73 kg, and 2.85 kg for the AVC27.

5.2 Percussive Rivet Installation

The proposed percussive riveting experiment uses 8 mm diameter rivets, which are installed
in 8.010 mm holes. These rivets require =~ 4 s to form a button diameter of > 11.125 mm,
and a button height of 3.175 — 5.080 mm, as specified by the aerospace industry. This
experiment is designed to compare the performance of two bucking bars of different weights,
both of which are tested with the same Ingersoll Rand AVC27 from the previous experiment.
The head shape of the bars are identical but vary in material and handle shape, and therefore
overall tool weight. This experiment tests a 6.07 kg steel bucking bar, and a 8.75 kg tungsten
bucking bar as illustrated in Fig. 5.3.

|

he force of the bucking bar is set to be &~ 88% of the rivet gun.
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The hardware settings for testing the 8 mm rivets are as follows:

e A trigger pull and hold duration of 3000 ms.

e Constant pneumatic hammer clamping force of 356 N.

e Constant bucking bar clamping force of 312 N.

Unlike the previous interference-bolt experiment, the trigger duration is set to be less
than the actual time required to fully form this type of rivet. This is because the change in
deformation is more apparent earlier on, and can be used to determine how much progress
each bar can achieve within the given time. If the trigger duration were to be set to allow both
bucking bars to reach completion, their respective progress would become indistinguishable
since the rivet may work harden and stop both bars within the specification - although one
bar could have achieved specifications earlier.

For this experiment, the air cylinder clamping the bucking bar is set to be 44 N less
than the air cylinder clamping the pneumatic hammer. During percussive riveting, the
riveter applies more force than the bucker to ensure the rivet head is fully seated to fill in
the counter sink. Fig. 5.4 illustrates this technique. Likewise, this approach provides the
maximum amount of material to be available on the tail end to produce the button as shown
in Fig. 5.5.

The percussive riveting experiment investigates six parameters:

rp Bucking Bar Displacement
xp Bucking Bar Recoil

Fr Bucker Reaction Force

P, Acoustic Pressure

¢p Button Diameter

hp Button Height
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Tungsten

Figure 5.3: Displays the tungsten bucking bar (top) and steel bucking bar (bottom). Note,
the yellow face on the steel bucking bar is a rubber scratch guard that only borders the
edges, preventing the bar from scratching the panels during misuse; there is no advantage
or disadvantage under the circumstances of this experiment. While the head shapes are

identical, the mass of the steel bucking bar is 69.3% of its tungsten counterpart.
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Figure 5.4: Ilustrates the head formation of the rivet in three stages. The countersink is
visible and ready to receive the appropriate sized rivet (left). The rivet is placed into the
hole, and the countersink remains partially visible (center). The rivet is formed, causing the
head of the rivet to fill in the countersink (right). The countersink is flagged by solid red

arrows, and the filled countersink is indicated by the dashed red arrow.
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Figure 5.5: Displays the side view of a rivet prior to being formed (left), and a bottom view
of the riveted tail end (right). The solid red arrow indicates the tail end, and the dashed red

arrow examples how the tail end is flattened and formed into a button shape.
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Chapter 6

EXPERIMENTAL RESULTS

6.1 Bolt Installation Results

For this experiment the Ingersoll Rand AVC27 and Atlas Copco 12P each drove four bolts
(n = 4). The results indicated the 12P completed the bolt installation task in 0.31 s and
with 7 strikes over the average of four runs, whereas the AVC27 required 0.43 s and 8
strikes. These values indicate the 12P fired at ~ 22 Hz, and the AVC27 at ~ 19 Hz. The
start time was determined by the first displacement value above 3e—3 mm from the zeroed
starting position, which was 150% of the oscillating amplitude for steady-state noise. The
end time was determined by taking the final displacement value of the pneumatic hammer
at rest = 24.5 mm, and indexing the time in which this value first appeared. The laser

displacement is illustrated in the top plot of Fig. 6.1.

The peak reaction forces registered on the pneumatic hammer load cell, Fr, of the AVC27
was substantially higher than the 12P, with an average of 1048 N, compared to 307 N, re-
spectively. A summary of the mean peak forces for each strike, and total force, Fr, measured
from the load cells, are found in Table 6.1. The average total impulse, area under the force-
time plot, for the 12P was 64.50 Ns, and 131.30 Ns for the AVC27. This plot is exampled in
the bottom of Fig. 6.1. This was calculated by Eq. 6.1. The significant reduction in impulse
for the 12P was due to the absence of the excitation peak, and the 12P achieving completion

i< 75 %-of the time-for-the AVC27.
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T
Impulse (J) :/ Fr dt
to

to = time corresponding to first peak (s) (6.1)

where
T = time corresponding to final peak (s)

Another approach to reviewing the findings was by correlating the displacement per strike
to the respective peak forces, providing a general understanding of the work performance
of each pneumatic hammer. Fig. 6.2 displays both the AVC27 and 12P approaching the
~ 24.5 mm end mark, however on different tracks. The results indicated the 12P completed
the same task as the AVC27 while applying less force on the load cell.

While the 12P had shorter exposure duration, ¢, and, Fr, than the AVC27, the 12P was
found to produce a higher acoustic pressure. On average, the 12P produced 32.95 Pa with
each strike, while the AVC27 produced 20.01 Pa. These values were converted to 124 dB and
120 dB for the 12P and AVC27, respectively, using Eq. 6.2. The raw and processed sound
pressure level results are listed in Appendix A.1 and A.2. Note, recall that the microphone is
fixed at =~ 0.07 m from the head of the pneumatic hammer, and the actual pressures reaching

the ears of a mechanic is less when taking into account the additional distance.

L,(dB) = 20[091};—0
m (6.2)
po = 20e—6 Pa (air)

The 12P was also found to experience a larger change in pressure during the first strike
of every test, compared to the AVC27. The AVC27 had a mean pressure drop, or change, of
72.49 kPa, while the 12P consumed on average, 98.76 kPa for the first strike. The pressure
change for the remaining strikes for both pneumatic hammers did not significantly differ,
averaging 47.01 kPa. The larger air consumption of the 12P was due to the air damper
recoiless feature. The results confirmed both pneumatic hammers received the same starting
air pressure, of &~ 790 k Pa, for all eight tests. Table 6.2 summarizes the results. The complete
charts for the Ingersoll Rand AVC27 are found in Appendix A.1 and A.2. The charts for the
Atlas.Copeo 2P are found.in Appendix A.3 and A.4.
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Averaged Reaction Force per Sequential ng Strike
9000 r
Fr=8381N
8000 | 1085
7000 |
Z 6000 |
= I
e I
g L
< 5000 r
§=] [
§ : 990
O 4000 f
= I
= :
3000 |
Fr=2150N
I 313
I 822
oL 270
Ingersoll Rand Atlas Copco
AVC27 12P

Table 6.1: Display the averaged peak reaction force for each of the 8 strikes, represented by
8 stacked bar boxes for the AVC27, and 7 strikes for the 12P. These values are stacked to
illustrate the total magnitude of cyclic loads, Fr, associated with each pneumatic hammer.

The summed peak forces of the AVC27 was &~ 3.9 times that of the 12P.

www.manharaa.com




36

"8n[s o) Jo uonsod SurjIe)s JUISISUOOUL Y} 0
ONP SI SIX® JuatedR[dSIp o) SUOTR JgT oY) U0 OYLIIS JSIY oY} 10] I0II0 IoFIe[ oY ], ‘JUowode[dsIp oY) I0J [RIUOZLIOY pUR
‘59010 JO 9BURI 10110 o1} 10] [II}IOA ‘SIR( I0I1I0 o) A POYRIISN{[l PUR LIS [DRD I0] PIJRINO[ed SI UOIJRIADD PIRPUR)S
QU "soyLIS JOo Ioquunu oY) Surjussardor ‘sjutod wesss sey Jg1 0odo) se[ry o) pue ‘syutod JySe sey ) gHAY puey

[[0S198U] oY ], OYLI}s Yoea 0} 100dsal )M sjuatieoe[dsIp padelose pue $9010J UOIORAI POSRISAR 1) SIUSSL] :g'Q oINJL ]

(ww) juswaoseldsig
8 174 v 4 (74 8L oL 143 Zl oL g 9 4 4 0
T T T T T T T T T T T ¢

[ I
dzl oodo) sepy
12D\ puey |josiabu| 1§

—f—i
B s — —e— —— TT oot

(N) @010+

—{ ooz

- 006

— ke 0001

- % _ —{oon
| |

_ _ |
uoljeIAS( PJEPUBIS UM SSN|eA UBSIy
jo|d uoissaibold - jjog aouaiagiaju|

ooeL

www.manharaa.com




37

Displacement, X, (per strike) 3.07-mm 3.51-mm

Mean Reaction Force, Fy 1048-N 307-N

Derived Acceleration, ag Max: 114-m/s2, Mean: 26-m/s? Max: 25-m/s2, Mean: 14-m/s?
Total Impulse, J 131.30-Ns 64.50-Ns

Noise Level, P,, 120-dB 124-dB

Air Consumption, AP First: 72-kPa, Mean: 47-kPa First: 99-kPa, Mean: 47-kPa
Exposure Duration, t; 0.43-s 0.31-s

Total Strikes, ny 8 7

Table 6.2: Summarizes the results of the interference-fit bolt experiment.

Following the index scheme found in Eq. 3.1, the 12P averaged a Pl-score = 287, and
the AVC27 had a Pl-score = 704. Appendix A.3 displays the trends of all eight runs, with
the final value for each plot representing the PI-score. At this time, the likelihood of injury
cannot be inferred from these Pl-scores such as doubling the score does not correlate with
injury to occur twice as likely. Defining a safe perimeter of operation will require further

testing beyond the scope of this thesis.

6.2 Percussive Riveting Results

For this experiment, the tungsten bucking bar formed a larger button diameter within the
same given duration and number of strikes, ng = 56, as the steel bucking bar. Over the
course of four runs each (n = 4), the tungsten produced a button diameter of 10.732 mm
and height of 5.175 mm. The steel bucking bar formed an average diameter of 10.370 mm
and height of 5.588 mm. The tungsten came within 87% of the minimum require diameter,
while the steel reached 76%. Additionally, the average button height for the tungsten bar
was within 96%, while the steel bar was 87% of the height range. Table 6.3 summarizes the

results-of the butteon-diameters and heights.
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Button Diameter Button Diameter
Avg Formation = 76%

Avg Formation = 87%

Percent (%)
Percent (%)

Button Height Button Height
Avg Formation =87% Avg Formation = 96%

Percent (%)
Percent (%)

Table 6.3: Summarizes the button diameters and heights for each rivet run with respect to
the selected bucking bar. The tungsten bar was found to produce 11% more button formation
and 9% more button height than the steel bar. These values were calculated using Eq. 6.3
and Eq. 6.4.

Button Diameter Formation % = 98 — Dotars_ x 100
@goal — Dstart
Gt = 8.000 mm (63)
grven
ngoal = 11.125 mm
. . hstart - hB
Button Height Formation % = ——————— x 100
hstart - hgoal
hstart = 9.690 mm (64)
given

hgoar = 5.080 mm
The difference in button height for the two bucking bars was also seen in the laser displace-

engachieved 8% more displacement than the steel bar. The discrepancy

—
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Recoil, Xj, (per strike) 1.77-mm 1.43-mm

Mean Reaction Force, Fy 1456-N 1195-N

Derived Acceleration, ag Max: 149-m/s?2, Mean: 41-m/s? Max: 114-m/s2, Mean: 31-m/s2
Total Impulse, J 1059-Ns 1056-Ns

Button Diameter 10.370-mm 10.732-mm

Button Height 5.588-mm 5.175-mm

Mean Reaction Force, Fy 837-N 801-N

(Total Strikes, ng) 56 56

(Noise Level, P, 120-dB 120-dB

(Air Consumption, AP) First: 73-kPa, Mean: 47-kPa First: 72-kPa, Mean: 46-kPa

Table 6.4: Summarizes the results of the 8 mm rivet experiment. The bottom three pa-
rameters with parenthesis pertain to pneumatic hammer used, indicating both tests were

executed under equivalent conditions.

between this 8% and the physically measured button height of 9% previously stated may
be accounted for by the deflection of the test bench and coupon. Based on the laser data,
the tungsten bar was also found to experience 15% less recoil than the steel bar. For this
test, bucking bar recoil was defined as the difference between the peak displacement and the
trough that followed. Fig. 6.3 displays the trend of the tungsten and steel bars, along with
the calculated recoil. Note, the final displacement peak does not directly correlate with the
total travel (displacement), as clarified in Appendix B.1.

The average load cell measurements, or Fr, on the back of the tungsten and steel bars
were 1195 N and 1456 N respectively, indicating an 18% reduction in peak magnitudes for
tungsten. The average total impulse for the tungsten was 1056 Ns, and 1059 Ns for steel,
using Eq. 6.1, which was a < 0.5% difference. The mean reaction force on the rivet gun when
tested with the tungsten was found to be 4% lower, than when paired with the steel bar. The
static and differential pressure measurements to the AVC27 for both tested registered within

082t 1:0% foralleightsrunssindicating both bars were tested under equivalent conditions.
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While the tungsten bar did not produce a difference in the overall impulse, as seen between
the two pneumatic hammers in the previous experiment. The tungsten bar achieved more
rivet deformation, which inferred a shorter work duration over the steel bucking bar if the test
duration was extended. Fig. 6.4 displays the tungsten bar as producing more displacement
with less force.

The Percussive Index defined by Eq. 3.1, was also applied to this experiment to further
develop its use. The tungsten bucking bar averaged a Pl-score = 7,541, while the steel
averaged 21,472. The AVC27 pneumatic hammer used with the tungsten bucking bar av-
eraged a Pl-score = 23,658, and then 26,070 when paired with the steel bar. Compared to
the interference-fit results, the Pl-score for the AVC27 pneumatic hammer was significantly
higher when applying a higher clamping force and additional number of strikes (going from
ngr = 8, to ng = 56). The plots for the Pl-scores are found in Appendix. B.4 and B.5.

The results indicated the tungsten bucking bar was capable of forming rivets in a shorter
amount of time, while reducing the overall forces both the riveter and bucker are exposed

to in this process, additionally the bucker experiences less recoil in exchange for carrying a

heavier tool.
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Chapter 7
CONCLUSION

In this thesis, we proposed designing an automated test bench to conduct ergonomic
evaluations, which was validated with dynamic system modeling and by the data it produced.
By modeling the test bench to represent a human mechanic installing percussive fasteners,
and the use of actual fasteners and materials, we were able to correlate tool performance to
human-stress factors. Automating this process achieved test repeatibility and granted the
use of a previously established index, defined as a f(Fg,ts, mr).

The test bench determined the Atlas Copco 12P completed bolt installations in 72% of the
time the Ingersoll Rand AVC27 required, and generated 52% less total impulse on the load
cell. This indicated the optimal pneumatic hammer for installing 12.675 mm interference-fit
bolts was the Atlas Copco 12P (with the built-in recoiless feature). With regards to the
bucking bar experiment on 8 mm wing rivets, the test bench determined the tungsten bar
provided 11% more rivet formation in the same amount of time as the steel bar, while also
reducing the recoil and peak load cell forces by 15% and 18%, respectively. The test bench
quantitatively concluded a heavier bucking bar, if able to be wielded by a mechanic, improves
tool performance.

Future improvements to this study involve:

e Further investigating the applications of an index to compare and grade percussive

tools.

e Develop a second generation dynamic system model to include materials representing

the soft-tissue-of the-hand and wrist joint, and mass of the human body.
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e Normalize the starting position of the slug in pneumatic hammers, improving consis-

tency of the first strike for each test and across all tools.

e Determine the significance of applying a ramp input to vary the clamping force while
hammering, to simulate a mechanic pushing harder as the rivet becomes more difficult

to form following each strike.

e Incorporate finite element analysis to model the vibrations generated by the cyclic

loading, as seen in Fig. 7.1.

Figure 7.1: Displays finite element model of percussive tools forming an 8 mm rivet from
the exterior view (top), and lengthwise cross-sectional view (bottom). A pneumatic hammer
dye from the Ingersoll Rand AVC27, and flat steel bucking bar is used in simulating the first

strike.
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Appendix A
INTERFERENCE BOLT RESULTS
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Appendix B
PERCUSSIVE RIVETING RESULTS
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Steel Bucking Bar (6.07-kg)
ng x Time (s) X (mm) X p (mm) Fy (N) P, (Pa) AP (kPa)
1 0.56 0.28 0.30 784.16 286.75 72.15
2 0.57 0.97 1.15 1426.88 171.41 33.00
3 0.62 1.18 1.25 1342.66 184.75 36.57
4 0.67 1.25 1.09 1218.55 284.25 38.36
5 0.72 1.35 1.07 1242.24 234.82 3691
6 0.77 1.50 1.15 1290.21 258.98 39.13
7 0.82 1.62 1.21 1294.24 257.59 39.68
8 0.88 1.75 1.25 1310.00 222.25 38.96
9 0.93 1.84 1.21 1321.54 217.68 38.36
10 0.98 1.98 1.26 1324.32 278.87 40.11
11 1.04 2.07 1.25 1335.44 238.03 40.44
12 1.09 2.18 1.27 1338.25 279.14 40.79
13 1.14 2.31 1.29 1363.68 252.27 41.23
14 1.20 2.40 1.32 1369.37 299.05 41.89
15 1.26 2.50 1.33 1387.14 249.27 43.08
16 1.31 2.60 1.34 1387.16 291.63 41.89
17 1.37 2.68 1.33 1397.89 296.86 41.85
18 1.43 2.76 1.39 1432.02 278.39 40.69
19 1.48 2.84 1.39 1417.99 286.54 40.86
20 1.54 2.93 1.47 1445.38 240.04 40.38
21 1.60 3.01 1.48 1445.42 271.16 39.71
22 1.65 3.08 1.49 1473.56 271.58 40.66
23 1.71 3.15 1.55 1502.56 283.42 40.08
24 1.76 3.20 1.61 1512.40 278.60 39.28
25 1.82 3.25 1.63 1529.23 256.98 40.23
- 26 1.87 3.30 1.72 1515.75 257.46 40.79
27 1.92 3.37 1.76 1539.07 246.39 40.39
g 28 1.98 3.43 1.77 1540.25 240.49 40.98
m 29 2.03 3.50 1.92 1534.38 281.81 41.10
30 2.09 3.53 1.93 1533.80 244.19 41.12
31 2.14 3.56 1.89 1521.95 239.16 4041
32 2.19 3.60 1.88 1527.85 241.74 39.85
33 2.25 3.66 1.93 1519.61 262.27 40.38
34 2.30 3.68 1.95 1531.17 260.13 41.24
35 2.35 3.73 1.97 1530.73 296.38 40.81
36 2.41 3.78 1.96 1529.84 315.15 41.75
37 2.46 3.81 1.98 1546.39 313.39 39.38
38 2.51 3.85 1.97 1525.44 279.34 39.34
39 2.57 3.89 1.99 1538.65 323.90 39.35
40 2.62 3.95 2.04 1553.27 253.14 42.08
41 2.68 3.96 1.93 1557.67 256.96 40.50
42 2.73 4.00 2.01 1549.61 296.43 40.66
43 2.78 4.03 2.04 1571.09 276.53 40.67
44 2.84 4.06 2.04 1556.44 269.25 41.14
45 2.89 4.11 2.10 156247 306.12 40.65
46 2.94 4.12 2.05 1563.15 250.75 40.26
47 3.00 4.16 2.06 1579.59 248.94 40.50
48 3.05 4.19 2.14 1593.74 264.71 40.34
49 3.11 4.18 2.14 1628.76 266.49 39.09
50 3.16 4.23 2.11 1656.76 289.96 40.49
51 3.21 4.22 2.05 1655.44 308.53 41.28
52 3.26 4.26 2.07 1651.60 294.38 40.04
53 3.32 4.27 2.08 1660.65 253.21 39.84
54 3.37 4.32 2.07 1663.93 276.07 38.68
55 3.42 4.35 2.14 1674.32 298.03 40.07
56 3.47 439 2.12 1666.51 264.10 40.41

Table B.1: Displays the parameter values for the first run of the steel bucking bar.
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Steel Bucking Bar (6.07-kg)

ng x Time (s) X p (mm) X p (mm) Fyz (N) P, (Pa) AP (kPa)
1 0.53 0.13 0.19 789.86 273.70 74.97
2 0.54 1.02 131 1416.47 149.02 50.82
3 0.60 1.28 1.47 1395.68 192.68 46.43
4 0.65 1.33 1.51 1302.44 227.18 41.85
5 0.70 1.46 1.52 1319.83 274.62 42.76
6 0.76 1.59 1.72 1436.52 297.73 40.89
7 0.81 1.66 1.63 1457.18 305.25 41.68
8 0.86 1.78 1.62 1428.17 257.82 41.05
9 0.91 1.85 1.58 1401.28 251.12 40.26
10 0.96 1.94 1.63 1373.53 287.21 40.33
11 1.02 2.02 1.62 1345.96 277.12 40.76
12 1.07 2.08 1.56 1346.32 248.02 40.98
13 1.13 2.16 1.48 1338.33 271.97 41.54
14 1.18 2.25 1.41 1338.80 241.22 40.83
15 1.24 2.30 1.38 1339.37 264.59 40.85
16 1.30 2.40 1.40 1351.17 257.57 41.01
17 1.35 2.47 1.42 1353.49 262.25 41.91
18 1.41 2.55 1.39 1361.04 269.24 41.05
19 1.46 2.65 1.54 1389.67 233.63 40.64
20 1.52 2.72 1.56 1401.98 257.02 41.72
21 1.57 2.76 1.62 1413.00 257.98 41.12
22 1.63 2.84 1.72 1411.53 270.67 41.26
23 1.68 2.92 1.82 1433.48 253.19 41.19
24 1.74 2.97 1.84 1480.00 313.14 42.18
25 1.79 3.02 1.87 1465.93 259.90 41.82
o~ 26 1.84 3.08 1.83 1495.17 257.54 40.94
= 27 1.90 3.16 1.90 1467.24 228.78 40.30
= 28 1.95 3.19 1.90 1472.46 303.97 40.03
m 29 2.01 3.26 1.90 1468.60 236.49 40.10
30 2.06 3.30 1.89 1471.99 244.08 40.95
31 2.12 335 1.95 1476.62 299.58 41.76
32 2.17 337 1.79 1514.61 235.18 40.66
33 2.22 347 1.99 1482.65 267.66 41.09
34 2.28 3.47 1.83 1525.19 244.34 40.71
35 2.33 3.57 1.93 1505.09 277.37 41.70
36 2.38 3.58 1.89 1535.59 257.95 40.54
37 2.44 3.67 2.00 1503.93 257.57 40.27
38 2.49 3.70 1.96 1534.54 282.07 39.97
39 2.55 3.77 2.03 1500.16 288.86 40.35
40 2.60 3.78 2.02 1512.75 266.08 40.61
41 2.66 3.83 2.03 1514.66 303.51 40.70
42 2.71 3.87 2.04 1509.79 274.97 40.53
43 2.77 3.92 2.05 1511.62 260.52 40.98
44 2.82 3.97 2.08 1533.62 289.30 41.50
45 2.88 3.96 2.00 1550.16 25245 40.73
46 2.93 4.04 2.08 1552.00 254.05 41.24
47 2.99 4.05 2.03 1583.57 287.10 41.36
48 3.04 4.09 2.05 1549.30 278.07 41.21
49 3.10 4.12 1.99 1582.75 276.57 41.71
50 3.15 4.16 2.03 1575.60 280.21 42.19
51 3.20 4.18 1.98 1600.18 25491 41.12
52 3.26 4.22 2.01 1596.10 237.16 41.04
53 331 4.28 2.11 1591.36 199.93 41.03
54 3.37 4.26 1.96 1594.24 279.34 40.35
55 3.42 4.31 2.06 1608.18 288.51 40.83
56 347 4.38 2.11 1586.42 292.47 40.56

Table B.2: Displays the parameter values for the second run of the steel bucking bar.
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Steel Bucking Bar (6.07-kg)

ng x Time (s) X p (mm) X p (mm) Fyz (N) P, (Pa) AP (kPa)
1 0.54 0.12 0.22 837.69 259.20 73.38
2 0.54 0.98 1.32 1423.08 110.89 49.46
3 0.60 1.26 1.45 1395.82 200.16 44.91
4 0.65 1.28 1.50 1311.38 293.21 42.40
5 0.71 1.37 1.34 1278.23 27531 43.09
6 0.76 1.43 1.32 1259.97 278.07 40.98
7 0.82 1.56 1.37 1280.03 309.15 40.82
8 0.87 1.62 1.38 1292.38 257.65 41.28
9 0.92 1.75 1.41 1288.89 319.32 42.49
10 0.98 1.81 1.39 1301.25 331.53 41.41
11 1.03 1.92 1.37 1301.27 334.28 42.16
12 1.09 1.99 1.35 1301.13 271.28 41.65
13 1.14 2.09 1.40 1324.35 317.13 41.60
14 1.20 2.19 1.39 1330.62 336.73 42.12
15 1.26 2.25 1.35 1332.28 335.02 42.52
16 1.31 2.33 1.39 1349.24 243.80 41.77
17 1.37 2.41 1.45 1379.97 327.98 41.68
18 1.42 2.48 1.54 1385.58 293.41 41.63
19 1.48 2.54 1.59 1393.27 330.83 41.61
20 1.53 2.60 1.62 1406.38 240.61 40.96
21 1.58 2.68 1.69 1434.45 247.80 40.45
22 1.64 2.73 1.69 1431.33 260.92 40.18
23 1.69 2.83 1.77 1444.57 299.59 41.05
24 1.75 2.89 1.79 1462.49 252.86 41.18
25 1.80 2.94 1.79 1469.26 282.95 41.81
n 26 1.85 2.98 1.80 1465.74 252.44 40.42
= 27 1.91 3.05 1.83 1463.60 282.73 41.63
= 28 1.96 3.10 1.84 1467.11 300.45 41.37
m 29 2.02 3.13 1.78 1486.34 271.07 41.26
30 2.07 321 1.84 1483.95 257.10 41.44
31 2.12 3.26 1.87 1474.42 269.63 40.69
32 2.18 331 1.84 1476.18 302.10 40.01
33 2.23 3.36 1.86 1477.06 288.81 40.72
34 2.29 3.40 1.88 1494.32 270.39 41.36
35 2.34 3.45 1.90 1489.75 271.83 40.72
36 2.40 3.51 1.91 1495.03 299.79 41.81
37 2.45 3.55 1.91 1504.46 286.02 40.99
38 2.51 3.60 1.93 1500.18 280.43 41.94
39 2.56 3.64 1.93 1504.43 302.00 42.68
40 2.62 3.69 1.90 1508.39 281.77 41.62
41 2.67 3.71 1.90 1505.94 279.34 40.82
42 2.72 3.76 1.93 1506.98 270.52 41.75
43 2.78 3.79 1.91 1520.46 304.48 40.51
44 2.83 3.85 1.93 1520.23 274.21 41.00
45 2.89 3.88 1.97 1514.93 295.55 41.16
46 2.94 391 1.93 1543.37 310.32 41.06
47 3.00 3.93 1.87 1523.32 319.37 40.65
48 3.05 3.99 1.98 1524.50 315.47 40.38
49 3.10 4.00 1.93 1546.48 273.19 41.88
50 3.16 4.08 2.02 1537.95 291.04 41.34
51 3.21 4.10 2.01 1540.40 27533 41.88
52 3.27 4.12 1.99 1561.06 274.03 41.47
53 3.32 4.20 2.09 1550.40 278.93 41.76
54 3.38 4.22 2.11 1534.68 302.97 41.77
55 3.44 4.26 2.13 1542.52 277.22 41.40
56 3.49 4.31 2.18 1553.61 279.03 41.53

Table B.3: Displays the parameter values for the third run of the steel bucking bar.
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Steel Bucking Bar (6.07-kg)

ng x Time (s) X p (mm) X p (mm) Fyz (N) P, (Pa) AP (kPa)
1 0.54 0.63 0.70 834.36 296.81 73.50
2 0.55 1.17 1.42 1427.15 155.47 48.77
3 0.60 1.51 1.44 1409.34 175.88 45.87
4 0.66 1.53 1.59 1411.36 225.14 43.75
5 0.71 1.53 1.46 1331.63 256.38 41.92
6 0.77 1.60 1.31 1279.42 299.30 41.62
7 0.82 1.69 1.27 1271.32 240.98 41.37
8 0.87 1.80 1.31 1279.53 327.43 41.84
9 0.93 1.88 1.28 1296.38 278.97 40.96
10 0.98 1.98 1.34 1310.77 280.35 41.07
11 1.03 2.07 1.38 1324.89 328.49 41.60
12 1.08 2.16 1.42 1328.34 270.08 39.98
13 1.14 2.25 1.42 1343.35 245.45 41.26
14 1.19 2.34 1.43 1349.39 239.88 40.17
15 1.25 242 1.41 1340.32 280.04 41.17
16 1.30 2.49 1.46 1380.45 217.79 41.96
17 1.35 2.60 1.49 1371.53 324.14 41.38
18 1.41 2.67 1.50 1384.40 252.47 41.78
19 1.46 2.74 1.57 1405.92 345.35 41.17
20 1.52 2.79 1.56 1411.62 215.22 41.80
21 1.57 2.85 1.62 1420.33 333.46 40.32
22 1.63 2.95 1.67 1424.52 248.60 40.43
23 1.68 3.01 1.72 1425.45 259.00 41.01
24 1.73 3.04 1.68 1452.55 322.34 41.48
25 1.79 3.11 1.73 1451.77 311.82 40.93
- 26 1.84 3.15 1.71 1472.21 316.56 41.06
= 27 1.89 3.25 1.79 1447.77 302.16 41.44
= 28 1.95 3.26 1.76 1473.71 327.50 40.49
m 29 2.00 3.32 1.78 1491.88 313.60 40.02
30 2.05 3.39 1.74 1494.16 309.94 40.67
31 2.11 343 1.76 1512.17 312.69 40.11
32 2.16 3.50 1.83 1500.64 313.58 40.70
33 2.21 3.56 1.89 1523.11 232.89 40.42
34 2.27 3.60 1.92 1526.97 280.86 40.96
35 2.32 3.61 1.85 1544.98 271.47 40.47
36 2.37 3.67 1.91 1528.84 271.45 39.72
37 2.43 3.75 1.97 1523.30 233.19 41.70
38 2.48 3.74 1.81 1533.27 258.13 40.98
39 2.54 3.78 1.85 1539.40 248.98 41.04
40 2.59 3.87 1.99 1547.76 267.04 41.03
41 2.65 3.89 2.00 1550.25 264.55 40.47
42 2.70 3.90 1.92 1576.81 237.20 40.99
43 2.75 3.98 1.99 1561.12 249.24 40.43
44 2.81 3.97 1.91 1589.16 296.83 40.26
45 2.86 4.06 2.07 1575.62 280.49 40.00
46 2.92 4.09 2.08 1571.37 291.61 40.19
47 2.97 4.13 2.05 1579.83 279.64 41.42
48 3.02 4.14 2.01 1604.86 29331 40.60
49 3.08 4.19 2.11 1582.70 287.56 40.23
50 3.14 4.22 2.12 1592.76 282.05 39.67
51 3.19 4.29 2.13 1610.27 251.34 40.91
52 3.24 4.23 1.96 1617.60 285.70 40.86
53 3.30 4.30 2.12 1620.33 315.57 40.39
54 3.35 4.34 2.05 1627.99 310.49 40.08
55 3.41 4.35 2.06 1623.61 235.59 40.83
56 3.46 4.40 2.13 1618.12 227.51 39.68

Table B.4: Displays the parameter values for the fourth run of the steel bucking bar.
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Tungsten Bucking Bar (8.75-kg)

ng x Time (s) X p (mm) X p (mm) Fyz (N) P, (Pa) AP (kPa)
1 0.54 0.50 0.57 693.86 235.96 74.83
2 0.54 1.13 1.33 1101.73 164.26 48.10
3 0.61 1.44 1.19 1099.78 166.82 44.17
4 0.66 1.49 1.08 1066.55 262.28 42.90
5 0.71 1.59 0.97 1033.27 237.74 42.09
6 0.77 1.67 1.01 1072.64 216.56 41.03
7 0.82 1.77 1.05 1059.03 252.13 41.48
8 0.87 1.88 1.11 1064.97 284.33 41.03
9 0.93 1.98 1.08 1049.88 297.01 40.23
10 0.98 2.07 1.06 1047.23 233.56 40.52
11 1.03 2.16 1.07 1060.72 265.42 40.17
12 1.09 2.28 1.02 1091.13 292.28 41.51
13 1.15 2.40 1.09 1108.71 276.52 40.58
14 1.20 2.48 1.10 1104.53 268.64 40.21
15 1.26 2.54 1.08 1101.79 284.67 39.83
16 1.31 2.65 1.10 1135.06 285.34 40.31
17 1.37 2.74 1.14 1147.33 265.20 40.42
18 1.42 2.84 1.19 1149.60 274.79 41.05
19 1.48 2.90 1.19 1166.60 244.66 40.19
20 1.54 2.98 1.24 1159.54 254.15 40.34
21 1.59 3.04 1.20 1166.59 296.75 40.77
22 1.65 3.10 1.27 1171.85 306.29 42.01
23 1.70 3.17 1.36 1185.98 297.84 40.74
24 1.75 3.23 1.41 1191.04 241.10 40.57
25 1.80 3.31 1.47 1200.24 293.10 39.73
— 26 1.86 3.39 1.51 1207.01 297.29 40.15
= 27 1.91 343 1.51 1214.11 245.17 39.58
= 28 1.96 3.51 1.52 1211.55 258.90 40.33
m 29 2.02 3.56 1.52 1210.39 291.86 41.01
30 2.07 3.62 1.52 1218.22 284.48 40.34
31 2.12 3.67 1.55 1222.11 257.51 40.30
32 2.18 3.71 1.54 1227.35 276.95 40.19
33 2.23 3.78 1.58 1231.21 248.43 39.77
34 2.28 3.83 1.58 1242.78 245.68 40.60
35 2.34 3.91 1.65 1248.57 244.04 40.62
36 2.39 3.96 1.63 1251.14 249.33 40.94
37 2.45 3.98 1.63 1258.65 250.29 41.24
38 2.50 4.07 1.70 1257.51 247.86 40.77
39 2.55 4.09 1.67 1265.70 257.26 40.19
40 2.61 4.15 1.66 1272.88 261.07 39.61
41 2.66 4.17 1.67 1272.18 270.11 40.69
42 2.71 4.20 1.64 1292.47 242.13 39.84
43 2.77 4.24 1.64 1294.63 249.42 40.88
44 2.82 4.30 1.67 1304.75 271.98 40.37
45 2.87 4.32 1.72 1298.47 277.15 40.24
46 2.93 4.36 1.68 1305.94 265.74 39.31
47 2.98 4.40 1.72 1307.07 258.16 40.65
48 3.03 4.47 1.68 1334.01 270.21 40.31
49 3.09 4.51 1.74 1326.27 237.55 41.28
50 3.14 4.56 1.76 1318.32 280.43 40.33
51 3.19 4.58 1.69 1331.40 258.26 40.44
52 3.25 4.65 1.76 1333.38 252.60 40.40
53 3.30 4.70 1.80 1336.79 241.55 39.63
54 3.35 4.75 1.84 1329.69 249.98 40.23
55 3.41 4.81 1.86 1332.53 278.42 40.88
56 3.46 4.81 1.79 1347.04 289.04 41.40

Table B.5: Displays the parameter values for the first run of the tungsten bucking bar.
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Tungsten Bucking Bar (8.75-kg)
ng x Time (s) X p (mm) X p (mm) Fyz (N) P, (Pa) AP (kPa)
1 0.53 0.53 0.64 753.85 257.70 73.85
2 0.54 1.14 0.85 1136.94 187.52 49.53
3 0.59 1.46 1.20 1111.87 17741 46.71
4 0.65 1.49 1.14 1089.72 228.21 42.99
5 0.70 1.56 1.26 1069.28 290.71 43.25
6 0.76 1.71 1.40 1139.55 307.79 43.18
7 0.81 1.82 1.38 1139.57 305.72 41.17
8 0.86 1.90 1.33 1126.82 283.41 40.58
9 0.92 1.99 1.23 1091.60 270.41 40.46
10 0.97 2.08 1.22 1085.40 261.70 41.50
11 1.03 2.14 1.19 1084.60 260.80 41.85
12 1.08 2.19 1.09 1093.13 236.86 40.91
13 1.14 2.32 1.20 1081.12 253.09 41.14
14 1.19 2.39 1.11 1099.61 273.75 41.26
15 1.25 2.48 1.16 1104.07 236.71 41.71
16 1.31 2.55 1.12 1111.93 249.69 41.27
17 1.36 2.65 1.17 1126.26 247.37 40.74
18 1.42 2.73 1.17 1141.00 293.66 41.52
19 1.48 2.82 1.21 1145.52 295.54 40.40
20 1.53 2.89 1.35 1152.24 264.94 40.84
21 1.59 2.95 1.37 1167.47 287.59 40.86
22 1.64 3.03 1.46 1161.81 266.96 41.03
23 1.69 3.10 1.45 1173.10 289.74 40.67
24 1.75 3.19 1.49 1205.89 256.47 40.99
25 1.80 3.24 1.52 1208.72 289.97 40.86
o~ 26 1.86 3.30 1.53 1178.50 284.28 41.72
= 27 1.91 337 1.53 1181.86 252.51 40.89
= 28 1.96 3.44 1.55 1188.80 238.87 41.27
m 29 2.02 3.51 1.55 1201.27 271.74 40.37
30 2.07 3.56 1.56 1192.04 241.44 40.78
31 2.13 3.62 1.57 1221.69 254.01 40.39
32 2.18 3.67 1.60 1223.67 309.22 40.86
33 2.24 3.73 1.61 1215.01 304.50 40.63
34 2.29 3.80 1.64 1229.56 289.83 41.54
35 2.35 3.84 1.61 1240.10 226.40 40.60
36 2.40 3.90 1.64 1238.96 285.44 41.79
37 2.46 3.95 1.66 1242.32 280.06 41.03
38 2.51 4.01 1.54 1250.46 231.92 42.08
39 2.57 4.06 1.68 1266.49 261.37 40.49
40 2.62 4.12 1.72 1245.42 253.56 40.59
41 2.68 4.17 1.59 1260.01 225.16 42.55
42 2.73 4.18 1.69 1274.53 313.31 40.25
43 2.78 4.27 1.66 1254.39 220.73 40.62
44 2.84 4.27 1.58 1279.85 251.67 39.68
45 2.89 4.33 1.70 1281.05 235.95 40.26
46 2.95 4.41 1.80 1275.38 292.62 40.51
47 3.00 4.45 1.74 1291.28 251.56 40.85
48 3.05 4.49 1.80 1303.82 282.70 41.15
49 3.11 4.53 1.64 1290.70 239.87 41.07
50 3.16 4.56 1.74 1288.47 301.78 41.11
51 3.22 4.64 1.79 1306.26 245.11 40.58
52 3.27 4.68 1.59 1315.82 249.90 41.55
53 3.32 4.70 1.80 1290.44 231.55 39.86
54 3.38 4.78 1.79 1299.71 300.33 39.90
55 3.43 4.80 1.72 1326.01 282.67 40.79
56 3.48 4.82 1.63 1316.83 22523 37.24

Table B.6: Displays the parameter values for the second run of the tungsten bucking bar.
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Tungsten Bucking Bar (8.75-kg)
ng x Time (s) X p (mm) X p (mm) Fyz (N) P, (Pa) AP (kPa)
1 0.53 0.18 0.22 731.95 303.42 74.13
2 0.56 1.12 1.25 1140.12 214.20 48.33
3 0.61 141 1.17 1119.47 195.42 44.66
4 0.66 1.43 1.20 1090.22 272.19 42.00
5 0.72 1.47 1.13 1047.38 209.45 42.66
6 0.77 1.56 1.13 1053.10 333.64 42.20
7 0.83 1.62 1.16 1065.62 327.61 40.98
8 0.88 1.72 1.18 1063.44 296.62 41.76
9 0.93 1.81 1.21 1065.59 247.60 40.23
10 0.99 1.90 1.16 1058.89 336.48 41.33
11 1.04 1.99 1.14 1070.69 292.63 41.24
12 1.09 2.06 1.08 1077.75 243.10 41.19
13 1.15 2.15 111 1087.14 274.26 40.52
14 1.21 2.25 1.10 1109.18 282.60 41.23
15 1.26 2.35 1.18 1114.59 249.05 40.56
16 1.31 2.41 1.20 1117.15 282.10 41.85
17 1.37 2.46 1.26 1122.92 292.41 41.20
18 1.42 2.54 1.31 1139.96 303.44 41.36
19 1.48 2.59 1.29 1138.76 302.40 41.18
20 1.53 2.68 1.32 1146.56 303.58 41.19
21 1.59 2.77 1.37 1159.05 292.49 40.58
22 1.64 2.85 1.48 1182.32 305.90 40.72
23 1.70 2.90 1.55 1188.43 284.71 40.39
24 1.75 2.96 1.58 1188.51 294.68 40.82
25 1.80 3.03 1.56 1198.31 224.24 41.74
n 26 1.86 3.13 1.59 1208.96 244.05 41.83
= 27 1.91 3.18 1.58 1210.30 279.91 41.11
= 28 1.96 3.24 1.61 1222.42 308.65 40.20
m 29 2.02 331 1.63 1219.94 288.51 40.57
30 2.07 3.36 1.62 1213.80 239.30 40.06
31 2.13 3.44 1.67 1226.30 271.35 40.63
32 2.18 3.50 1.68 1225.50 258.25 40.40
33 2.23 3.56 1.70 1229.91 296.18 41.17
34 2.29 3.60 1.58 1251.40 253.17 40.93
35 2.34 3.66 1.62 1233.35 289.08 40.29
36 2.39 3.71 1.62 1242.13 252.49 39.90
37 2.45 3.78 1.71 1240.64 302.41 40.28
38 2.50 3.85 1.73 1238.68 286.58 40.64
39 2.55 3.89 1.63 1265.22 252.03 41.26
40 2.61 3.95 1.73 1245.34 297.21 40.79
41 2.66 3.98 1.73 1246.33 248.36 41.18
42 2.71 4.03 1.64 1276.86 298.80 40.16
43 2.77 4.07 1.62 1278.03 237.19 40.18
44 2.82 4.11 1.64 1282.68 254.22 39.86
45 2.87 4.17 1.67 1281.59 289.44 40.51
46 2.92 4.22 1.69 1278.37 306.87 41.14
47 2.97 4.26 1.70 1287.63 288.09 40.26
48 3.03 4.30 1.67 1293.79 229.13 39.95
49 3.08 4.33 1.65 1296.06 291.57 40.77
50 3.13 4.39 1.72 1299.50 241.48 41.44
51 3.18 4.40 1.68 1303.09 288.06 40.22
52 3.24 4.46 1.76 1311.12 286.01 39.97
53 3.29 4.48 1.72 1313.24 291.45 39.81
54 3.34 4.54 1.74 1314.42 296.27 39.90
55 3.39 4.56 1.71 1316.06 291.21 40.77
56 3.44 4.58 1.70 1318.57 293.70 40.44

Table B.7: Displays the parameter values for the third run of the tungsten bucking bar.
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Tungsten Bucking Bar (8.75-kg)
ng x Time (s) X p (mm) X p (mm) Fyz (N) P, (Pa) AP (kPa)
1 0.52 0.22 0.24 733.33 334.69 74.22
2 0.56 1.08 1.32 1139.27 145.39 49.13
3 0.61 1.39 1.14 1114.12 191.77 44.99
4 0.66 1.42 1.21 1103.38 200.60 42.69
5 0.72 1.47 1.13 1052.35 266.38 42.93
6 0.77 1.55 1.01 1018.70 253.08 42.21
7 0.82 1.67 1.10 1035.12 279.02 39.79
8 0.87 1.78 1.13 1050.74 308.97 40.12
9 0.93 1.87 1.13 1060.31 227.90 41.68
10 0.98 1.99 1.20 1064.86 224.87 41.15
11 1.03 2.07 1.15 1065.92 229.08 40.96
12 1.09 2.19 1.23 1082.21 242.35 40.32
13 1.14 2.30 1.21 1077.39 257.18 40.29
14 1.20 2.36 1.20 1098.52 272.70 40.99
15 1.25 2.46 1.24 1107.92 322.97 42.38
16 1.30 2.54 1.23 1111.25 279.00 42.02
17 1.36 2.62 1.26 1129.87 259.81 41.39
18 1.41 2.73 1.31 1136.65 297.27 41.23
19 1.46 2.78 1.24 1125.31 317.92 41.74
20 1.52 2.85 1.33 1158.71 311.96 41.06
21 1.57 2.96 1.32 1144.95 276.06 40.78
22 1.63 3.02 1.42 1176.08 267.11 40.59
23 1.68 3.08 1.39 1157.94 344.25 41.36
24 1.74 3.15 1.46 1188.37 314.77 41.39
25 1.79 3.23 1.47 1179.45 315.76 41.57
- 26 1.84 3.28 1.55 1200.77 283.03 41.16
= 27 1.90 3.36 1.58 1206.40 306.97 40.66
= 28 1.95 3.41 1.60 1215.17 323.69 39.97
m 29 2.00 3.48 1.59 1228.76 269.12 41.08
30 2.06 3.53 1.62 1235.47 265.32 40.74
31 2.11 3.59 1.66 1238.58 289.89 41.26
32 2.17 3.63 1.62 1247.96 263.83 41.23
33 2.22 3.68 1.65 1236.17 270.71 42.22
34 2.28 3.73 1.66 1248.27 253.86 40.74
35 2.33 3.78 1.66 1268.79 27591 39.96
36 2.38 3.85 1.72 1269.44 248.00 41.17
37 2.44 3.93 1.77 1273.79 282.70 40.67
38 2.49 3.92 1.65 1284.20 279.65 40.86
39 2.54 4.01 1.78 1278.16 250.18 41.16
40 2.60 4.03 1.72 1301.49 260.69 41.25
41 2.65 4.10 1.82 1294.49 290.96 41.16
42 2.71 4.13 1.67 1301.73 281.95 40.09
43 2.76 4.18 1.77 1303.54 275.90 39.59
44 2.81 4.20 1.67 1313.59 264.42 40.86
45 2.86 4.25 1.73 1305.79 275.08 40.37
46 2.92 4.29 1.69 1312.60 274.33 41.04
47 2.97 4.31 1.66 1321.31 285.73 40.09
48 3.02 4.41 1.87 1311.33 296.05 40.01
49 3.07 4.41 1.71 1336.46 249.72 40.74
50 3.12 4.45 1.83 1327.06 286.19 40.57
51 3.18 4.47 1.76 1337.41 273.96 41.26
52 3.23 4.50 1.76 1344.02 298.29 40.28
53 3.28 4.56 1.82 1339.73 293.06 40.08
54 3.34 4.59 1.82 1345.80 308.80 40.03
55 3.39 4.61 1.83 1353.76 293.59 40.59
56 3.44 4.63 1.74 1352.32 288.52 40.22

Table B.8: Displays the parameter values for the fourth run of the tungsten bucking bar.
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Steel Bucking Bar (6.07-kg) Tungsten Bucking Bar (8.75-kg)

N, 1 2 3 1 3

1 430.21 476.66 680.00 731.59 392.79 583.29 335.4 351.64
2 878.51 921.50 902.61 8884 779.84 922.14 894.0 831.96
3 551.17 676.95 677.86 618.84 714.82 729.69 716.9 725.83
4 691.52 767.53 745.50 738.35 70281 744.46 733.53 750.76
5 688.07 761.64 706.29 764.2 595.22 74741 733.19 703.31
6 661.36 42.01 738.97 687.2 645.74 08.42 676.93 668.53
7 652.06 23.46 721.14 684.45 697.89 41.4 757.67 670.07
8 673.87 16.76 730.83 685.79 716.83 35.1 753.19 68525
9 668.13 08.01 720.00 698.8! 706.56 21.6 745.41 693.09
10 678.03 16.24 72071 708.9 699.12 795.9 723.12 748.16
11 675.16 9.09 724.30 7133 675.08 769.94 692.74 691.74
12 640.0 0.76 726.54 723.02 616.39 766.7 671.99 742.12
13 664.2 744.61 73342 12473 61531 740.74 664.77 678.04
14 653.32 732.60 729.75 72342 635.06 753.16 661.77 727.65
15 644.72 737.49 730.3 724.22 632.35 701.49 674.23 740.86
16 646.44 740.55 739.2 739.06 637.10 736.55 710.13 697.63
17 642.22 73829 748.6 72726 662.98 695.94 760.32 744.81
18 637.7 744.42 758.84 728.93 682.16 692.53 779.11 771.21
19 645.54 750.19 780.3 75329 703.6 706.70 765. 73337
20 627.37 759.01 1.48 755.14 7245 721.36 7614 781.98
21 64349 784.04 35.22 784.74 719.0 2438 763.24 764.55
2 668.26 819.26 46.21 794.23 743.0 37.53 34.75 791.64
23 685.67 88534 48.79 793.03 775.1 58.87 514 789.34
24 752.90 912.59 54.63 14.9 790.59 56.26 53.03 14.90
25 780.5 919.75 73.37 24.23 798.57 58.11 52. 20.52
26 1 912.92 68.25 27.10 799.09 59.89 59.25 34.48
27 94 917.27 67.32 1637 04.35 63.24 5741 41.56
28 21.4 924.13 78.6: 37.37 05.61 63.62 59.94 52.39
29 06.16 918.02 75.94 45.09 01.44 66.11 61.23 36.82
30 90821 916.92 8091 36.84 10.27 67.93 60.24 6.57
31 897.71 93371 30.09 46.81 05.41 65.16 61.00 42.90
32 888.89 896.22 79.04 1.46 08.92 62.75 62.60 35.12
33 906.79 933.79 87.5 69.40 08.72 67.87 66.66 53.78
34 915.19 909.36 90.94 80.72 09.76 63.04 66.25 42.86
35 911.05 932.88 87.7 884.01 08.30 63.5 59.64 36.60
36 909.36 924.09 38.82 889.31 09.51 60.3 62.17 2.99
37 925.19 938.40 91.22 887.26 09.64 60.74 57.04 38.48
38 912.87 929.14 95.29 87417 08.91 70.02 55.36 33.96
39 92555 932.70 94.07 900.23 08.99 59.75 68.01 37.06
40 931.66 943.23 97.69 905.37 10.88 58.33 55.99 37.84
41 891.99 940.29 96.06 908.38 12.59 65.93 57.01 33.20
42 916.78 942.27 05.00 907.93 20.80 69.49 68.79 41.71
43 936.50 942.44 900.80 915.52 20.93 57.73 69.48 33.85
44 929.10 949.04 904.77 909.97 18.05 67.01 72.08 41.00
45 94046 946.09 905.75 913.90 14.35 63.97 62.90 37.33
46 924.11 949.30 907.39 910.14 21.2 55.09 62.95 38.43
47 925.06 943.30 89931 924.60 18.5 63.67 65.14 41.62
43 944.52 947.77 908.20 923.98 35.54 75.92 66.79 36.28
49 952.6 943.17 904.15 926.65 28.66 65.83 70.76 49.41
50 9523 948.92 919.0 929.32 29.60 74.98 68.41 37.29
51 947.42 946.58 922.54 934.13 39.63 65.12 74.95 42.74
52 949.83 948.55 918.5 929.92 3444 74.27 74.09 39.65
53 956.35 960.28 921.35 936.87 31.20 69.72 73.54 40.19
54 952.76 936.42 927.20 929.61 29.92 65.35 79.13 44.50
55 95830 957.68 923.24 935.98 32.14 83.40 82.4: 45.51
56 959.59 961.77 937.69 942.90 9.52 78.32 8531 48.75

Table B.9: Displays the peak reaction forces registered on the load cell for the Ingersoll Rand
AVC27, for both the steel and tungsten runs.
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Appendix C
NUMERICAL ANALYSIS

Figure C.1: Contains the five MATLAB scripts relevant to this thesis:

Dynamic System Response Model: Displays the code used to general the bode
responses of the ideal and implementation models.

Modeling Equivalent Forearm Stiffness: Lists the input parameters for determining
the stiffness of the radius bone, which is the larger of the two forearm bones (ulna & radius).
Experimental Results Processing: Includes a generic format to determine the peak
values and associated time values for each DA(Q) sensor.

Percussive Index Plot Generator: Defines the percussive index calculation and returns
a plot of the index with respect to exposure time.

Diagnostic Program Code: The code used to design the graphics user interface (GUI)
for a diagnostic program. This code utilizes the same data processing/filtering approaches
used to determine the experimental results in thesis. The code includes a browser feature
to select the desired microphone data file, and a set of buttons and a scroll bar to set the
run number and appropriate cutoff threshold to determine the peak points. Appendix C.2
displays the GUI and layout of the program.
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DiagnoStiC Program COUE .......c.eecviieeiiiieeerieetesie sttt st e sttt e et et e sre et e sreesaesteesaessesseensesseensensennes 8

Dynamic System Response Model

%% Parameters
Area = 0.003199994; %m

m= 2.9 + 2.64; %$kg. mass of arm and rivet gun
rho = 1.225; %kg/m"3

g = 9.81; %m/s"2

Vol = 0.00028447943; % m"3

B = 101000; %N/m"2 (Pa)

Cap = Vol/B

tau = .150/2.3; %s, 0.150 = 2.3*tau

Res = tau/Cap

%% Loaded Model

A [0 Area/m; -Area/Cap -1/ (Res*Cap)];
B = [1/m; 0];

C [1 01;

sys = ss(A,B,C,0);

Loaded TF = tf(sys)
% dem2 = [1 7.143 0.01326];
% m TF f(1l,dem2)

%% Bode Plots

optn = bodeoptions;
optn.FreqUnits = 'Hz'
optn.Title.FontSize = 18;
optn.YLabel.FontSize = 18;
optn.XLabel.FontSize = 18;
optn.TickLabel.FontSize = 12;
bode (Ideal TF, Loaded TF, optn)

h legend=legend('Tl(s)','T2(s)");
set (h_legend, 'FontSize',14);
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[n,d] = ss2tf(A,B,C,0)
mySys tf = tf(n,d)

o\

o°

h=gcft;

set (h, 'PaperOrientation', 'landscape’) ;
set (h, 'PaperUnits', 'normalized');

set (h, 'PaperPosition', [0 O 1 17);
print (gcf, '-dpdf', 'Bode Model.pdf');

o o o°

o°

Modeling Equivalent Forearm Stiffness

% Formula to determine stiffness and natural frequency model
of a dynamic riveting carriage.

o

cArea outer = (1157 + 163)/(1000"2);

r outer = sqrt(cArea_outer/pi);

dsp =['Outer Bone Radius: ',num2str(r outer),' m'];

disp (dsp)

r inner = r outer/1.24; %ratio literature (m)

cArea inner = (r inner”2) *pi;

dsp =['Inner Bone Radius: ',num2str(r inner),' m'];

disp (dsp)

cArea cortical = cArea outer - cArea inner;

dsp =['Cross-Sectional Area (Bone): ',num2str(cArea cortical),' m"2'];
disp (dsp)

L = .2626; %mm men's radii bone length literature

dsp = ['Radius Length: ',num2str(L) ,"' m'];

disp (dsp)

disp(' ")

E = 18.6*%1079; %N/m"2 modulus elasticity cortical bone literature
dsp =['E. Modulus (Cortical Bone): ',num2str(E),' N/m"2'];

disp (dsp)

k _bone = E*cArea cortical/L; % N/m stiffness of one radii
k N m = k bone;

dsp =['Spring Constant: ',num2str(k bone),"' N/m'];
disp (dsp)
disp(' ")

mass = 2.9; %Skg

dsp = ['Forearm Mass: ' , num2str(mass),' kg'l;

disp (dsp)

wn = sqgrt(k N m/mass);

dsp =['Radian Natural Freqguency (w n): ',num2str(wn),' rads/s'];

74
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disp (dsp) 75

fn = (1/(2*pi))*sqgrt (k_N m/mass);

dsp =['Natural Frequency (f): ',num2str(fn),' Hz'];
disp (dsp)

disp(' ")

E delrin psi = 350000; %psi convert to Pa
E delrin = E delrin psi/0.00014503773773; SN/m, from 350,000 psi

dsp = ['E. Modulus (Delrin): ',num2str(E delrin),' N/m'];
disp (dsp)
Diameter delrin = 1.25; %in, must convert to m

Area Delrin = pi* (Diameter delrin/2*0.0254)"2;
dsp = ['Cross-Sectional Area (Delrin): ',num2str (Area Delrin),' m"2'];
disp (dsp)

Length Delrin = E delrin * Area Delrin / k_bone;

dsp = ['Length Required (Delrin): ',num2str(Length Delrin),' m'];

disp (dsp)

disp(' ")

disp('---(STANDARD UNITS Converted for Reference)')

dsp = ['---(Selected E. Modulus (Delrin): ',num2str(E delrin psi),' psi)'];
disp (dsp)

dsp = ['---(Selected Diameter (Delrin): ',num2str(Diameter delrin),' in)'];
disp (dsp)

Length in Delrin = Length Delrin * 39.3700787402; % m to in conversion

dsp = ['---(Length Required (Delrin): ',num2str(Length in Delrin),' in)'];
disp (dsp)

Experimental Results Processing

load(['C:\Users\Jonathan Ahn\...\RivetData.mat']);
for n = 1:4
format long

%% PARAMETERS
yl = Bucking Laser in(:,n); %Datum Laser for Interference Bolt Test
y2 = Rivet Laser in(:,n);

dt2 = 0.0002;
time2 = linspace (0, length (y2)*dt2,length(y2));

y3 = -Rivet Load Cell 1bf(:,n)*4.44822; %convert 1lbf to N
dt3 = 0.0001;
time3 = linspace (0, length(y3)*dt3, length(y3));

y4 = Microphone pa(:,n);

dtd4d = 0.00004;
ime4 i 0 (v4) *dtd, length(y4));
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$% LASER DISPLACEMENT (mm)
figure(1l);

y2 = smooth(y2);

y2 = -y2 + mean(y2(1:1000));
y2cut = min(y2 (end-7000:end)) ;

for m = 1l:length(y2);
if y2(m) < 3*10"(-3);
y2(m) = 0; %starting rest values normalized to zero
end
for m = 4800:1ength(y2);
if y2(m)> y2cut;
y2(m) = y2cut; %values beyond cutoff are normalized to end distance
end
end
end
for m = l:length(y2);
if y2(m) >0
start time(l)=time2 (m-1);
break
end
end

y2 = smooth (y2);

y2 = y2*.0254; S%Sconvert inches to mm
axl=subplot (211)
[pks,locs] = findpeaks(y2,time2, '"MinPeakDistance', .05);
$% PLOTTING PEAK VALUES
X = time2;
count = 1;
for m = [locs]
index = find(X==m) ;
X point (count) = X(index);
count = count+1l;
end
count = 1;
for m = [X point]
index = find(time2==m) ;
Lpks (count) = y2(index);
count = count +1;
end

for ¢ = 1l:length(Lpks)
Data(c,1l) = Lpks(c);
Data(c,3) = X point(c);
end
hl=plot (time2,y2,'r")
grid on, hold on
plot (X point,Lpks, 'rv')
title('Interference Fit Bolt Results')
ylabel ('Displacement (m) ")

LD diff = diff(Lpks);
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Data(c+l,2) = LD diff(c); 7
Data(l,2) = Data(l,1);
end

Data(c+3,1) = Lpks(end)-y2(l); %Total Displacement
Data(c+3, 3) X point (end)-start time; %Duration

%% LOAD CELL (N)
[LHi,LLo]=envelope(y3,1, 'peak');
my3 = mean(y3(1:1000));
for m = l:length(y3);
if time3 (m)<start time;
y3(m) = my3;
LHi (m) = my3;
end

if time3 (m)>locs (end) ;
y3(m) = mean(y3(end-1000:end)) ;
LHi (m) = mean(y3(end-1000:end))
end
end

ax2=subplot (212);

ys3 = y3.74; %$Scaled values to distinguish time position of peaks

mys3 = my3."4;

hold on, grid on
[pks2,locs2]=findpeaks (ys3,time3, '"MinPeakDistance', .04, '"MinPeakHeight', (3*mys

3/2)):

X = time3;

Y = y3;

count = 1;

for m = [locs2]
index = find(X==m);
X point (count) = X (index);
count = count+l;

end

count = 1;

for m = [X point] %Applied to non-scaled Load Cell data
index = find(time3==m) ;
Lpks (count) = y3(index);
count = count +1;

end

for ¢ = 1l:length(Lpks)
Data(c,4) = Lpks(c);
Data(c,5) = X point(c);
end

Data(c+2,5) = 1/ (mean(diff (locs2))); %Driving Frequency

hl=plot (time3, [y3],'r")

grid on, hold on

plot (X point,Lpks, 'rv')

ylabel ('Force (N)")

xlabel ('Time (s)'")

legend ('Ingersoll Rand AVC27','---Peak',6 'Atlas Copco 12P','---Peak')
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= time4; 78
x';

Microphone pa(:,n);

= y."1;

KORDX X
I

Mic0O0 = Microphone pa(:,n);

Mic2 = Microphone pa(:,n);
Mmax = max(y);

Msort = sort(y, 'descend');
Mlength = length(y);

thr = .1;

Mtop = Msort(l:Mlength*thr);
Mcutoff = mean (Mtop);

MicO (MicO<Mcutoff) = 0;

index4 = find(time4>X point (end));
yl = MicO;

yl (index4:end) = 0;

X = timed;

[pks,locs] = findpeaks(yl,x, 'MinPeakDistance', .035);
X = timed;
Y = vy4;
count = 1;
for m = [locs]
index = find(X==m);
X point (count) = X(index);
count = count+1l;
end
count = 1;
for m = [X point]
index = find(timed4==m) ;

Lpks (count) = y4 (index);
count = count +1;

end

for ¢ = 1l:length(Lpks)
Data(c,6) = Lpks(c);
Data(c,7) = X point(c);

end

Data(c+2,7) = 1/ (mean(diff (locs))); %interval
plot(x,y,'r")

grid on, hold on

plot (X point,Lpks, 'rv')

ylabel ('Acoustic Pressure (Pa)')

xlabel ('Time (seconds) ')

end

%% STATIC PRESSURE (Pa)

y7 = Static_ Pressure psi(:,n);

dt7 = 0.0001

time7 = linspace (0, length (y7)*dt7,length(y7));

y8 = Diff Pressure psi(:,n);
dt8 = 0.0001
time8 = linspace (0, length(y8)*dt8,length(y8));

www.manharaa.com




y9 = Temperature f(:,n); 79
dt9 = 0.2
time9 = linspace (0, length(y9)*dt9,length(y9));

m = mean(y9(1:5))

figure (1),

findpeaks (y7,time7, 'MinPeakDistance', .035);

[pksl,locsl] = findpeaks(y7,time7, '"MinPeakDistance', .035);
locsl = locsl';

figure (2);

findpeaks (-y7,time7, 'MinPeakDistance', .035);

[pks2,locs2] = findpeaks(-y7,time7, '"MinPeakDistance', .035);
locs2 = locs2';

al=subplot (311)
plot (time7,y7)
az=subplot (312)
plot (time8, y8)
a3=subplot (313)
plot (time2, -y2)
linkaxes ([al a2 a3], 'x")

Percussive Index Plot Generator

load(['C:\Users\Jonathan Ahn\...\RivetData.mat']):;
for n = 1:4

tf = #4#;
tl = #4#;
threshold = ##;

for tau = [.0025]
t2 = tl+tau;
count = 1;

for k = 0:0.0001: (tf-t1)
tal= tl+k;
ta2 = t2+k;

dt = 0.0001;
(tal/dt) ;
m2 = (ta2/dt);

3
e
|

y3 = -Rivet Load Cell 1lbf(ml:m2,n)*4.44822; %convert lbf to N
= (y3/(2.85+2.9)); % Force/mass gun

s
w
|

time3 = linspace (0, length(y3) *dt, length(y3));
Q = trapz(time3,y3);

Qa = (Q/tau)”"2.5;

HIC (count) = Qa*tau;
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count= count +1; 80
x = l:1l:count-1;
end

x = linspace (0, length (HIC) *dt, length (HIC)) ;
axl=subplot (211)

plot (x,HIC, "linewidth',1.2)

hold on

end

HIC = real (HIC)

findpeaks (HIC, x, '"MinPeakDistance', .05, '"MinPeakHeight', threshold);

[pks, locs]=findpeaks (HIC,x, "MinPeakDistance', .05, '"MinPeakHeight', threshold);
ANSWER (:,2)= pks';

ANSWER (:,1)=1ocs;

Diagnostic Program Code

o\

%Code revised on 6/26/16 JA
%$Includes browse feature to locate parent folder

function varargout = FAUB Mic(varargin)

gui Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui_ Singleton,
'gui OpeningFcn', QFAUB Mic OpeningFcn,
'gui OutputFcn', @FAUB Mic OutputFcn,

'gui LayoutFcn', 1,
'gui Callback', (1
if nargin && ischar (varargin{l})
gui State.gui Callback = str2func(varargin{l});

end
if nargout
[varargout{l:nargout}] = gui mainfcn(gui_State, varargin{:});
else
gui mainfcn(gui State, varargin{:});
end

function FAUB Mic OpeningFcn (hObject, eventdata, handles, varargin)

handles.output = hObject;

% Update handles structure

guidata (hObject, handles);

if strcmp (get (hObject, 'Visible'), 'off")
plot (rand (1)) ;

end
function varargout = FAUB Mic OutputFcn (hObject, eventdata, handles)
varargout{l} = handles.output;

function pushbutton3 Callback (hObject, eventdata, handles)
function pushbuttonl Callback (hObject, eventdata, handles)
%axes (handles.axesl) ;

cla;

% popup_sel index = get (handles.popupmenul, 'Value');

% StrvVal = get(handles.textl8, 'String');

load([Strval]);

S
°
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% Microphone pa = Microphone pa'; $code for transposing labview if needed 81
Run = get (handles.edit2,'String');

%$Hole = get (handles.edit3, 'String');

SetRun = get (handles.text53, 'String');

SenSel = get (handles.popupmenu2, 'String');

$load (['C:\Users\Jonathan\Documents\BARC\', num2str (Run), '\Hole

', num2str (Hole), '.mat']); %$select directory pathway
%$load ([SetRun, "\'',num2str (Run), '\Hole ',num2str (Hole),'.mat']);

load(['C:\Users\Jonathan
Ahn\Desktop\Riveting\Thrubolt AVC27 ACl2P\RivetData80l.mat']);
guidata (hObject,handles) ;
rows = size(Microphone pa, 2)

n=1;
time = dt Microphone pa(:,n)* (length (Microphone pa(:,n))-1);
x = 0:dt Microphone pa(:,n):time;
$x = x';

y = Microphone pa(:,n);

MicO = Microphone pa(:,n);
Mic2 = Microphone pa(:,n);
plot(x,y)

hold on

Mmax = max(y);

Msort = sort(y, 'descend');

Mlength = length(y);

%$Percent = get (handles.edit2, 'String’');

threshold = get (handles.textb54, 'String');

thr = str2double (threshold);

Mtop = Msort(l: (Mlength*thr),1l); %top 3% of data input
Mcutoff = mean (Mtop)

MicO (MicO<Mcutoff) = 0;

yl = MicO;

findpeaks(yl, x, 'MinPeakDistance', .025);

[pks, locs] = findpeaks(yl,x, 'MinPeakDistance', .025);
count = length (pks);

duration = (max (locs)-min(locs)):;

interval = 1/ (mean(diff (locs)));

set (handles.textl, 'String', [num2str (count)]);
set (handles.text2, 'String', [num2str (duration)
set (handles.text3, 'String', [num2str (interval)
y2 = abs(y);

Mmax = max(y2);

Msort = sort(y2, 'descend');

Mlength = length(y2);

1)
1)

%Percent = get (handles.edit2, 'String');
Mtop = Msort (l: (Mlength*thr),1); Stop 3% of data input
Mcutoff = mean (Mtop) ;

Mic2 (Mic2<Mcutoff) = 0;
y3 = Mic2;
[pks2,locs] = findpeaks(y3,x, 'MinPeakDistance', .025);

Mminl = floor (min (pks));
Mm 1 = '(pks2)),‘
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if Mminl > Mmin2;

Mmin = Mmin2;
else Mmin = Mminl;
end

Mmax = ceil (max(y2));
Mmean = floor (mean (pks2));

set (handles.text32, 'String', [num2str (Mmax)]);
set (handles.text34, 'String', [num2str (Mmean)])
set (handles.text33, 'String', [num2str (Mmin)])

function FileMenu Callback (hObject, eventdata, handles)
function OpenMenultem Callback (hObject, eventdata, handles)
file = uigetfile('*.fig'");
if ~isequal(file, 0)

open (file);
end

function PrintMenultem Callback (hObject, eventdata, handles)
printdlg (handles.figurel)
function CloseMenultem Callback (hObject, eventdata, handles)
selection = questdlg(['Close ' get (handles.figurel, 'Name') '?'],
['Close ' get(handles.figurel, 'Name') '...'],...
'Yes', 'No', 'Yes'");
if strcmp(selection, 'No')
return
end

delete (handles.figurel)

function popupmenul Callback (hObject, eventdata, handles)
function popupmenul CreateFcn (hObject, eventdata, handles)
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, "BackgroundColor', 'white') ;
end
global rows;

for i = l:rows;
set (hObject, 'String', {'Rivet Signal' i});
end

function pushbutton2 Callback (hObject, eventdata, handles)

grid on
function checkbox3 Callback (hObject, eventdata, handles)
a = get (hObject, 'Value');
if a == 1;
grid on
else

grid off
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function sliderl CreateFcn (hObject, eventdata, handles) 83
if isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'"))
set (hObject, 'BackgroundColor',[.9 .9 .9]);
end

function textl CreateFcn(hObject, eventdata, handles)
function axesl CreateFcn (hObject, eventdata, handles)
[x,map]=imread('C:\Users\Jonathan\Documents\MATLAB\myfunctions\Barclogo.jpeg'
) ;
xs = 70;
ys = 270;
I2=imresize(x, [xs ys]);
h=uicontrol('style', "pushbutton', ...
'units', 'pixels', ...
'position', [150 680 ys+10 xs+10],...
'cdata',I2)

[x,map]=imread('C:\Users\Jonathan\Documents\MATLAR\myfunctions\UWlogo.jpg"') ;
xs = 50;
ys = 300;
I2=imresize(x, [xs ys]);
h=uicontrol ('style', "'pushbutton', ...
'units', 'pixels', ...
'position', [990 690 ys+10 xs+10],...
'cdata',I2)

function text27 CreateFcn (hObject, eventdata, handles)
function text32 CreateFcn (hObject, eventdata, handles)
function text34 CreateFcn (hObject, eventdata, handles)
function text33 CreateFcn (hObject, eventdata, handles)

function editl Callback (hObject, eventdata, handles)

function edit2 Callback (hObject, eventdata, handles)
function edit2 CreateFcn (hObject, eventdata, handles)
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'"))

set (hObject, 'BackgroundColor', 'white');
end

function edit3 Callback (hObject, eventdata, handles)
function edit3 CreateFcn (hObject, eventdata, handles)
if ispc && isequal (get (hObject, 'BRackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, "'BackgroundColor', 'white');
end

function editd4 Callback (hObject, eventdata, handles)
function edit4 CreateFcn (hObject, eventdata, handles)
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, "'BackgroundColor', 'white');

end
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function slider2 Callback (hObject, eventdata, handles) 84
function slider2 CreateFcn (hObject, eventdata, handles)

if isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'"))

set (hObject, 'BackgroundColor',[.9 .9 .91);
end

function pushbutton5 Callback(hObject, eventdata, handles)
[file path] = uiputfile('*.png');
print ([path file], '-dpng');

function pushbutton6 Callback (hObject, eventdata, handles)
foldername = uigetdir;

fullpathname = strcat (foldername);

set (handles.text53, 'String', fullpathname)

SetRun = get (handles.text53, 'String');

function text53 CreateFcn(hObject, eventdata, handles)

function slider3 Callback (hObject, eventdata, handles)
slider value = get (hObject, 'Value');
set (handles.text54, 'String', slider value);
function slider3 CreateFcn (hObject, eventdata, handles)
if isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', [.9 .9 .9]);
end

function text54 CreateFcn (hObject, eventdata, handles)
function popupmenu2 Callback (hObject, eventdata, handles)
function popupmenu2 CreateFcn (hObject, eventdata, handles)
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');
end
function text6l CreateFcn(hObject, eventdata, handles)
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